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A B S T R A C T   

Entomologists have widely applied re-identification techniques to better understand insects and their interaction 
with the environment. While humans can re-identify other humans and some mammals quite well, entomologists 
rely on gluing markers on insects to perform this task. This paper presents an approach for purely visual re- 
identification of bumblebees (Bombus terrestris) without the need to use markers. Non-invasive identification 
methods offer the possibility to observe the interaction of bumblebees with their environment without distur-
bance. Both a CNN model and a simple body shape model were used to investigate how they can be re-identified 
within a colony. The best-performing model, BumbleNet, correctly identifies more than two-thirds (CMC-1 score) 
of the individuals. Bumblebees are known for their substantial variations in body shape. To understand whether 
other features can also play a role in re-identification, different augmentations are applied during the training of 
BumbleNet. It was found that non-body-shape features increased the performance of BumbleNet by 25 per-
centage points (CMC-1 score). This also explains the observed superiority of the CNN-based BumbleNet 
compared to the BumbleShape model, that is solely based on body size parameters.   

1. Introduction 

Animal re-identification (re-ID) is a laborious, albeit useful, task. Re- 
ID of single individuals allows to draw conclusions about the diversity, 
relative abundance and behavioral patterns of different animal species. 
Re-ID based on camera traps is particularly popular because it is less 
invasive and can reduce the amount of work required. In addition, 
camera-based methods also offer the possibility of machine-assisted 
analysis of the video data [1]. Machine-assisted animal re-ID has been 
successfully demonstrated for mammals in many cases [2–5], including 
apes, whales and elephants. However, re-ID is not limited to mammals; 
promising examples of insect re-ID already exist. Arbuckle et al. [6] 
developed the Automatic Bee Identification System (ABIS), which can 
reliably identify bee species based on wing patterns. From this, Francoy 
et al. [7] showed that these patterns also allow the identification of the 
Africanized bee. Furthermore, Kastberger et al. [8] have shown that 
wing patterns can be used not only to classify bee species but also to 
distinguish individuals of the giant honeybee. Murali et al. [9] suc-
ceeded in re-identifying fruit flies using a convolutional neural network 
(CNN). In a recently published honeybee re-ID dataset, Chan et al. [10] 
used the abdomen as a re-ID feature and highlighted the importance of 

time invariant features. 
Surprisingly, to our knowledge, there are no attempts to transfer 

visual animal re-ID to the bumblebee domain, especially since it is 
known that bumblebees differ much more in body shape and live in 
much smaller colonies than honeybees [11]. This is despite the fact that 
bumblebees, as important pollinators, have been the subject of repeated 
research. Mola and Williams [12] review methods for studying the 
movements of bumblebees, including QR codes, paint stains or RFID 
chips, all of which being particulary important for ecotoxicological 
studies as required for pesticide testing [13]. However, tagging in-
dividuals is extremely laborious and only possible for a small number of 
individuals [14]. Furthermore, it cannot be ruled out that tagging in-
dividuals may affect the observed behaviour. For these reasons, it is 
desirable to replace the existing procedures with a purely visual 
re-identification. 

This paper comprises two contributions. (1) We investigate to what 
extent bumblebees, within a colony, are re-identifiable on visual mate-
rial and (2) which features are of decisive importance. To address these 
research questions, a Convolution Neuronal Network (CNN) based 
model, a simple body shape model and a random baseline model were 
benchmarked using the Bumblebee Re-ID Dataset [15]. 
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2. Material and methods 

For the purpose of determining behavioural patterns, entomologists 
are interested in identifying bumblebees as they re-enter the hive [11, 
16]. The underlying problem can thus be characterised as a bumblebee 
retrieval problem across the same camera. In an actual use case, a 
bumblebee would be captured by the camera when leaving the hive and 
some images of this individual would be stored together with an ID in 
the so-called gallery for later retrieval. Images of returning bumblebees 
(probe images) are then compared against the gallery. There may be 
several images of different bumblebees in the gallery at this time. Since 
bumblebees are registered when they fly out, it can be assumed that in a 
real application all incoming bumblebees are already known to the 
system, which motivates the classification as closed re-ID [17]. 

The re-ID task is commonly divided into object detection, tracking 
and id retrieval [18]. While the computer vision community already 
provides solutions for the first two tasks [19–21], this work focuses on 
the id retrieval, i.e. algorithms that output a ranked candidate list of 
potential matches for any probe image. In the following, it is explained 
how re-ID models can be evaluated and how the corresponding 
bumblebee data set is composed. 

2.1. Evaluation metrics 

When evaluating re-ID algorithms, the Cumulative Matching Char-
acteristics (CMC) curve is often used. CMC-k represents the probability 
that a query identity (probe) appears in the top-k ranked retrieved re-
sults (candidate list) [18,22]. The candidate list is generated by the re-ID 
algorithm and contains images from the gallery set ranked by the 
matching probability assigned by the algorithm. Regardless of how 
many true matches there are in the gallery, only the first match is taken 
into account in the CMC calculations, making it impossible to assess 
recall ability. This is acceptable in practice if the users’ main concern is 
to find a match at the top of the ranking, but is otherwise undesirable 
[18]. This disadvantage does not apply to the mean Average Precision 
metric (mAP). In contrast to the CMC score, mAP is able to differentiate 
between algorithms that have the first correct match at the same posi-
tion by also taking further matches and their positions into account [22]. 
Since CMC scores are easy to understand, they are reported together 
with the more precise mAP. 

2.2. Description of dataset 

The dataset was previously published by Tausch et al. [15]. The 
images were filtered and finally show 99 individuals from two com-
mercial bumblebee hives with more than 22 images available per indi-
vidual. The dataset was split randomly into a test and training dataset, 
keeping the ratio of male and female individuals constant. 

In both the test and training datasets, g = 17 images were selected 
per individual as gallery images and p = 5 images were selected as probe 
images. To minimise temporal features in the image sequence of a 
bumblebee, gallery images were randomly selected from the first (n − g 
− p)/2 + g images and probe images from the remaining ones, where n 
denotes the number of available images. Training was performed on the 
first (n − g − p)/2 + g images of the training dataset. There are a mini-
mum of 22 images per individual (M=69.6, STD=65.3). 

2.3. Re-ID models 

Three bumblebee re-ID models were developed and compared. While 
the BodyShape model receives a list of body features as input, the 
BumbleNet model has to learn suitable features from the image data 
itself. Furthermore, the two models are compared with a third model 
that serves as a random baseline. 

2.3.1. BodyShape model 
The BodyShape model consists of a feature extractor and a learned 

metric. After applying an image segmentation, a rotated bounding box 
and a rotated ellipse was fitted to the resulting segmentation map. This 
allowed the extraction of several features that form the input for the 
BodyShape model (segmentation area, segmentation perimeter, 
enclosing rotated bounding box width, enclosing rotated bounding box 
height, enclosing rotated ellipse width and enclosing rotated ellipse 
height). In order to perform a classification based on these 7 properties, 
a distance metric was learned that outputs small distances for equal IDs 
and large distances for different IDs. For this purpose, the “Keep It 
Simple and Straightforward Method” (KISSME) by [23] was applied. 

However, attention must be paid to the extraction of the body 
characteristics. It is important to note here that the extremities (i.e. 
wings and legs) must not have any influence on the determined body 
size due to their potential for change. This means that it is not sufficient 
to calculate a binary mask by thresholding or background subtraction 
and then determine the stated characteristics. Instead of this error-prone 
procedure, a UNet architecture similar to the one presented by Ronne-
berger et al. [24] was trained to segment the bumblebee’s body by 
removing legs and wings. Fig. 1 shows the input, label and output of the 
segmentation net. Considering the average body size of bumblebees of 
95mm2 [11], the image shows a very large specimen. The average de-
viation of the computed bumblebee size from the labelled size, con-
verted into millimetres, is 18mm2. 

2.3.2. BumbleNet model 
FaceNet by Schroff et al. [25] is a face recognition system which 

employs CNNs to map images of human faces to a dense features space 
that is descriptive for the person depicted. Such a feature vector for a 
particular image is called its embedding. The goal is to obtain a function 
that maps faces of the same person to feature vectors that are as similar 
as possible while being dissimilar to other individuals. Thus, the 
embedding can be used to re-identify a particular individual. Using 
FaceNet to re-identify bumblebees is a sensible choice, as CNN-based 
approaches have already produced promising results when applied to 
animals [1]. 

To obtain the desired embedding, the triplet loss is employed [25]. 
The triplet loss minimizes the distance between the embeddings of an 
anchor image and a positive image, while maximizing the distance to a 
negative image. The positive image shows the same bumblebee as the 
anchor image while the negative image is guaranteed to show a different 
individual. Fig. 2 illustrates the triplet loss in practice. To obtain the 
embeddings we use the ResNet-18 [26] architecture as backbone and an 
embedding size of 128, which both have proven to be a sensible choice 
in a conducted hyperparameters search. This neural network will be 
referenced as BumbleNet in the following. 

In total, three variants of the BumbleNet were trained, which only 
differ in terms of pre-processing of the training data. In doing so, the 
network can be made more robust for real-world applications and pro-
vide insights into research question (2). 

Similar to the BodyShape model, it makes sense to use the segmented 
bumblebee for training rather than the raw bumblebee image, except 
that the rationale is different: by having a large number of images of 

Fig. 1. Foreground segmentation using a UNet. (1) Input, (2) labelled contours, 
(3) UNet output. Note the desired absence of legs and wings. 
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each individual, the network can learn that the position of the wings and 
legs is not a helpful cue for re-identification. What cannot be learned 
from limited training data, however, is that bumblebees in the real 
world could leave the hive without pollen and later return carrying 
pollen and thus significantly change their appearance. By segmenting 
the body, this pitfall can be eliminated at the cost of lost detail. In 
attempt to quantify the information loss of the segmentation, the per-
formance is given with and without (see BumbleNetRaw and 
BumbleNetSeg). 

Additionally, to obtain insights into which features are of decisive 
importance, a third variant of the BumbleNet model was trained. When 
training the BumbleNetSegScaled model, scaling was added to the list of 
possible input augmentations. Randomly scaling the images between 
80% and 130% of the initial dimensions prevents the model to use the 
individual’s size as a feature. A comparison with and without the scaled 
inputs allows statements about the relevance of this feature. Augmen-
tations that do not affect the bumblebee shape are used in all three cases, 
including slight colour jittering, gaussian noise, contrast variations and 
rotation. A comparison of the models can be found in Table 1. 

2.3.3. Random baseline model 
To show that a model has learned important appearance descriptors, 

it must show better results than a random baseline model. This role is 
accomplished by a model that generates randomly ordered lists of can-
didates. The model’s performance is then calculated as the average mAP 
or CMC score of all possible candidate lists. 

3. Results 

Fig. 3 shows the CMC accuracy for all models. With a CMC-1 score of 
0.6792 BumbleNetRaw is the model that gives the best results on the test 
data. However, segmenting the training data lowers the CMC-1 score by 
42%. This shows that by segmenting, the model loses information that 
would otherwise improve re-identification in the test data. As expected, 
the CMC score improves for higher values of k. For CMC-10, the accuracy 
already exceeds 88% (BumbleNetRaw) (see Table 2). If the body size 
feature is omitted from BumbleNetSeg, which was implemented by 
randomly scaling the training data when training the Bum-
bleNetSegScaled model, the CMC-1 score drops by another 37%. If visual 
features are not used at all (BodyShape model), the performance drops 
by almost 66% compared to the best model. A comparison with the 
random baseline, however, shows that all models succeeded in re- 
identifiying bumblebees based on distinct characteristics. 

A look at the mAP results in Table 2 does not provide any new in-
formation about the choice of the best (or second best) model: The mAP 
scores of these models are broadly consistent with the CMC scores, so 
there is nothing to suggest that considerations of the model’s recall 
capability should influence model choice. However, the BodyShape 
model may be preferred over BumbleNetSegScaled due to a better mAP 
score. 

4. Implications for application 

Real-world applications allow some simplifications that improve re- 
ID. These include (1) reducing the gallery set and (2) statistically 
modeling the probability of the presence of single bumblebees. Detect-
ing an individual in a small (gallery) set is easier than in a large set. The 
data set used here includes two bumblebee colonies. In reality, however, 
it is only necessary to distinguish the individuals of one colony. The set 
can be reduced even further if a dynamic gallery set is used. The intui-
tion then is that one does not compare a returning bumblebee with all 
known bumblebees, but only with the subset that previously left the 
hive. Modeling the presence of individuals helps to learn from contra-
dictory observations, for example, that the same bumblebee leaves twice 
without returning in between. Since each re-ID involves a confidence, it 
might make sense to believe not the most likely candidate bumblebee, 
but the one that does not contradict previous observations. If particu-
larly accurate data is required, a study can be limited to bumblebees that 
are particularly easy to identify. If the selection of bumblebees with 
extreme shapes does not affect the study, it may be possible to obtain 
even more accurate results. 

Fig. 2. Illustration of triplet loss. (Left) Two images of the 
same bumblebee (anchor and positive) are compared to an 
image of a different bumblebee (negative). (Center) The 
ResNet-18 provides the embeddings for each of the three 
images. (Right) In the embedding space, the anchor and 
the positive image should be as close to each other as 
possible while the negative image should be far away from 
both. During training, the model learns to find better 
embeddings so that the green distances are minimised and 
the red distances are maximised.   

Table 1 
Comparison of the three BumbleNet variants.  

BumbleNet variants Model characteristics 

BumbleNetRaw The training data is neither scaled nor segmented. This 
model has the most information available to find potential 
re-ID features. However, the model could learn unwanted 
features that are not related to the bumblebee itself but are 
somehow present in the image series, like special lighting 
conditions or distinctive debris. BumbleNetRaw could be 
confused by bumblebees carrying or not carrying pollen in 
real applications. 

BumbleNetSeg The training data was preprocessed by segmenting the 
bumblebee’s body. This removes noise (and possibly 
information) from the input image and makes the network 
more robust for real-world applications. 

BumbleNetSegScaled The training data was preprocessed as described above, but 
scaling was added to the list of input augmentation methods. 
This prevents the model from using body size as a feature 
and forces it to learn other characteristics. In this way, the 
influence of the body shape feature on the re-id task can be 
determined.  
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5. Discussion & Conclusion 

In relation to research question (1), to what extent bumblebees are 
re-identifiable on visual material, we have been able to show promising 
results. The best model is able to correctly assign two thirds of the in-
dividuals at first go (BumbleNetRaw). Since the model may have used 
some undesired information, the performance could be worse in reality. 
A safe lower bound for the model performance is the BumbleNetSeg with 
a CMC-1 score of 39%. 

It was already known that bumblebees show a remarkable diversity 
in their body size. This finding was confirmed by comparing the Bum-
bleNetSeg and BumbleNetSegScaled models, as omitting the size infor-
mation led to a sharp drop in the CMC-1 score. However, it was also 
found that other features play a role, still allowing a fourth of the bees to 
be correctly identified on the first attempt (see BumbleNetSegScaled, 
Table 2). The non-BodyShape model (BumbleNetSegScaled) slightly 
outperforms the BodyShape model, indicating that the general appear-
ance contains more information than the individual’s shape parameters. 

Due to the low contrast and resolution of the images, other features 
could become more important as image quality increases. Therefore, a 
dataset with more detailed and higher quality images, including pollen, 
would be desirable. Furthermore, a new dataset should integrate long- 
term and short-term re-ID data as proposed by Chan et al. [10]. 
Long-term data would then make it possible to transfer models without 
segmentation (e.g. BumbleNetRaw) into applications with confidence, 
as unwanted features are largely avoided. 

Finally, a bumblebee re-ID is possible on the given dataset. A real- 
world application would benefit from clever boosting through dy-
namic galleries and statistical modelling of presence probabilities. 
Relying solely on variations in body shape misses the potential of other 
visual features. 
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